P07401: EPA Water Disinfection Project
/public/

Home

Table of Contents

EPA Water Disinfection Project

The Need for Clean Water

Many rural parts of developing regions around the world lack access to safe drinking water. Water that is contaminated with pathogens and viruses that are harmful to the human body is often the only option the people of these regions have for drinking water.

The World Health Organization stated in a report entitled, Water for Life, that diarrhoeal diseases claim the lives of 5,000 young children throughout the world everyday. The lack of clean drinking water throughout the world can also cause social instability if not death. The United Nations has also expressed concern through the Millennium Development Goals which are eight goals that address global problems and are aimed to be achieved by 2015. Some of these goals are eradicating hunger and poverty, achieving universal primary education, and reducing child mortality.

These goals become more reachable by providing clean water through a safe, clean, and inexpensive method.

Sponsorship

A grant awarded by the Environmental Protection Agency will provide funding for the research and development of a solar water pasteurizer. The grant is part of the EPA's P3: People, Prosperity and the Planet Student Design Competition for Sustainability in which students devise various methods and products to address social, economic, and global concerns. The grants through the competition are awarded in two phases.

The team was awarded $10,000 as part of a Phase I grant to devise a working prototype of a solar pasteurizer. All Phase I teams compete for Phase II funding towards the end of the project duration which is set for $75,000.

More information on the P3 competition can be found here.

Customers

People of third world regions who lack access to clean, safe drinking water are the customers whose needs are to be met. Because there was no effective way to communicate between the customers and the design team on a global scale, Venezuela was targeted as a primary customer. Venezuela was chosen because the team had faculty members who had established points of contact with local Venezuelan non-governmental organizations and churches who worked closely with poorer sections of the country.

Mission Statement

The project mission is to design, construct, and test a working prototype of water pasteurizer that utilizes solar energy.

Solar Pasteurizer with Integral Heat Exchanger (SPIHX)

What is Pasteurization?

Pasteurization is a method in which heat is used to kill bacteria, pathogens, or viruses. It is a function of time and temperature. The graph below shows this time-temperature relationship when pasteurizing water in what is called the safety zone curve.

Pasteurization is ensured if the safety zone is reached. For example if 68 deg. C. is maintained for at least 15 minutes then pasteurization has occurred and the water is drinkable.

Pasteurization is ensured if the safety zone is reached. For example if 68 deg. C. is maintained for at least 15 minutes then pasteurization has occurred and the water is drinkable.

How the SPIHX Works

Overall assembly of final design

Overall assembly of final design

The Solar Pasteurizer with Integral Heat Exchanger collects and converts solar energy to heat energy to bring water to pasteurization levels. Flow is controlled by an auto-thermostat valve that is used in automobiles and can be purchased in any auto parts store.

The pasteurizer itself is made up of three sheets of aluminum that is enclosed in a plywood enclosure. The three sheets are assembled together such that two channels are created for water to flow through.

Incoming water travels through the top channel. The top aluminum sheet is painted with a selective coating which enhances solar absorptivity while retarding emissivity.

Once pasteurized, the thermostat valve opens and the water then flows through the bottom channel. The middle aluminum sheet facilitates heat exchange between the hot, outgoing pasteurized water and cold, incoming contaminated water.

The valve will remain closed until pasteurization levels have been reached. Once open, the valve will remain open as water will continuously pasteurize and flow making the SPIHX a faster means of obtaining potable water as opposed to a batch pasteurization process.

The image below outlines the steps in which the water flows through the SPIHX.

(1) Water is poured into the inlet bucket through a funnel fitted with a filter to separate sediments. (2) As water travels through the top channel solar flux warms it up. (3) The thermostat valve opens once pasteurization levels have been reached. (4) The pasteurized water flows through the bottom channel allowing new incoming water in the top channel to recover heat. (5) After the heat exchange process water flows into an outlet bucket.

(1) Water is poured into the inlet bucket through a funnel fitted with a filter to separate sediments. (2) As water travels through the top channel solar flux warms it up. (3) The thermostat valve opens once pasteurization levels have been reached. (4) The pasteurized water flows through the bottom channel allowing new incoming water in the top channel to recover heat. (5) After the heat exchange process water flows into an outlet bucket.

The SPIHX Team

Student Team Member Team Role E-mail
Sang Lee Project Manager ssl2914@rit.edu
Elaine Aiken Lead Engineer eka4084@rit.edu
Kellen Bucher Engineer kcb8819@rit.edu
Drazen Hadzialic Lead Test Engineer dah2052@rit.edu
Nathan La Croix Test Engineer nrl5012@rit.edu
Alexander Kinlock Material & Fabrication Analysis ajk0130@rit.edu
Sulen Gonc Material & Life Cycle Analysis sag7716@rit.edu
Faculty Member Team Role E-mail
Dr. Robert Stevens Team Guide / Customer rjseme@rit.edu
Dr. Andres Carrano Faculty Consultant alceie@rit.edu
Dr. Brian Thorn Faculty Consultant bkteie@rit.edu
Dr. Margaret Bailey Faculty Consultant mbbeme@rit.edu

Team Documents

The following files are arranged in accordance with the M.E.R.I.T. (Multidisciplinary Engineering Design Program at RIT) design process.

Planning

Needs Assessment

Concept Development

Concept Selection

Detail Design

Modeling

Note: The models are constantly used by the team to better the design. The uploaded versions here may not reflect the final dimensions or specifications of the prototype.

Weather data from Puerto Rico was used because data from Venezuela was unobtainable. The latitude and climate is relatively close to that of Venezuela.

Drawings

The following are zipped files containing drawings created through SolidWorks. Click on the link, save, and add in '.zip' at the end of the file name, and then unzip to view the drawings in SolidWorks.

B.O.M.

Function and Performance Review

Poster & Technical Paper

Project Reviews

P3 Competition

Resources