ASSISTIVE DEVICES: BACKGROUND PRESENTATION

September 28, 2009

Faculty Guide: Dr. Elizabeth DeBartolo

Michelle Bard (ME)
Alexander Ship (ME)
David Monahan (ME)
Kristin Gagliardi (ME)
Biomedical Systems and Technologies Track

- Projects that apply engineering skills to provide solutions to biological problems
- Applications include a wide range of topics that are split into families
Project Families

- Artificial Organs
- Bioengineering Fundamentals
- Assistive Devices
 - Sponsored by National Science Foundation (NSF)
 - Developmental disabilities
 - Physical disabilities
 - Nazareth College Physical Therapy Clinic
Nazareth College Physical Therapy Clinic

- An educational and clinical setting that serves clients who have exhausted insurance allowances or have no coverage at all
- Faculty support and advise physical therapy students
- Students perform the therapy and gain hands on experience
- Dr. Mowder-Tiney and Dr. Gombatto
Why RIT, Why Now?

- Engineering college in close proximity to the clinic
- History of working with Nazareth produce new therapy equipment
- Medical equipment is an excellent opportunity for multi-disciplinary design
 - Multiple, complex mechanical, electrical, and chemical components that increasingly require integration with hardware and software systems
 - Able to design equipment that is not available commercially
- Nazareth College Physical Therapy Clinic has limited resources to acquire new Equipment
- All stakeholders will benefit
Topics of Presentation

- Background research on existing projects in the assistive devices family as well as other applicable projects.
- General assessment of the Nazareth clinic and the aforementioned projects.
Past Senior Design Projects

- 08001 – Balance Training Bicycle
 - Stationary bicycle with pivoting frame
Past Senior Design Projects

- 08003 – Portable Obstacle Course
 - Many combinations of obstacles to measure mobility.
 - Provide comparative results
Past Senior Design Projects

- 08006 – Motion Tracking System
 - Gyroscopic sensing on legs
Past Senior Design Projects

- 09027 – Upper Extremity Motion Capture System
 - Measures motion and electromyographic signals of the arm
Balance Training Bicycle

- **Problem**
 - Need equipment to aid in balance training on bicycle

- **Benchmark**
 - Senior Design Project 2007-2008

- **Past Team**
 - Mentor
 - Dr. Debartolo
 - Jennifer Zelasko (IE), Jonathan Bawas (EE), Jeffrey Tempest (ME), James Nardo (ME), Carl Mangelsdorf (ME)
Balance Training Bicycle

- **Concept**
 - Use spring canister and winch to allow for adjustable range of motion
 - Sensor located on seat
 - Lights indicate angle

- **Prototype**
 - Currently at Nazareth
 - No longer in working order
Motion Tracking Sensors

- Critical aspect of all Nazareth projects
 - PT’s need concrete method of measuring motion
 - Sensor prioritization: project-to-project basis
 - Prior Sensors used:
 - Inclinometers
 - Gyroscopes
 - Potentiometers
 - Accelerometers
 - Encoders
Motion Tracking

- Mobile, wireless motion tracking device
- 4 Gyroscopes utilized
 - Measure patient’s angles of the hip, knee, and ankle joints
- Past Team
 - Mentor
 - George Slack
 - Josemaria Mora (EE), Wade Daughtery (EE), Brian Leigh (EE), Jennifer Mallory (ME), Eric Danielson (CE)
Motion Capture System

- Track motion of arm and accompanying muscles
- Concept Selection Matrix:
 - Rotary Potentiometers
 - Velocity measurements of limb movements
 - Measure elbow-shoulder, arm-body angles
 - Electromyography
 - Measure activity of 4 muscle groups

- Past Team
 - Mentor
 - Dr. Edward Brown
 - Melissa Gilbert (ME), Alan Smith (EE), JJ Guerrette (ME), Adey Gebregiorgis (EE), Pooja Nanda (EE), Dan Chapman (CE)
Existing Projects of Interest

- Technological possibilities:
 - iBot
 - MIT Second Skin:
 - Low-End Tracking Technology
 - Cost > $1000 Total
 - Projectors/Photosensors
 - Microcontroller- Bluetooth
Human Interfaces

- **A human interface** is the means by which a person interacts with a device.
 - Physical – handles, switches, knobs, straps, etc…
 - Digital – on screen instructions or buttons to click etc.

- **Human Factors** is about understanding what the human body is capable of and designing products/systems that match those capabilities.
 - Physical - Varied body types/sizes, Varied levels of physical ability
 - Mental - Varied levels of mental ability, easily and intuitively understood

Image from Designing for People by Henry Dreyfuss
Human Interfaces

In past projects:

Handlebars and seat on balance bike

Sensor attachments/electronics pouch in motion tracking system

GUI for motion tracking software

Arm brace and sensor attachments in upper extremity motion capture system
General Assessment

- Use background research and observations to develop a better understanding of how a project for the Nazareth clinic could be planned and executed
General Assessment Goals

- Develop some common themes between the projects
- Based on observations at the clinic, develop an understanding of the application environment
Common Themes

- **Accuracy and reliability**
 - 08006 did not meet accuracy requirements
 - Max angle, +/- 5%
 - 09027 team did not develop a calibration process

- **Ease of use**
 - 08001 is difficult for staff and clients
 - Pedal mechanism
 - Visual display
 - 08003 is straightforward and easy to use
Common Themes

- Incomplete aspects of project
 - 08001 did not include a feedback control on the winch system
 - Device was operational but lack of feedback control lead to failure
 - 08003 did not deliver automated tracking
 - Manual tracking was still available
 - 09027 did not complete the arm model
 - Device still operational
Clinic Capabilities and Needs

Capabilities

- **Durability**
 - Maintenance ability very limited or non-existent
 - Repair ability non-existent
- **Ease of use**
 - Limited or no ability to learn complex procedures for use

Needs

- **Versatility**
 - Range of ambulatory ability
 - Wide range of body sizes
- **Easy Access**
 - Patients with limited mobility or dexterity
 - Therapists provide physical support
- **Small storage size**
Conclusions

- Plan projects that will be successful even with failures along the way
- Keep projects as simple as is required and as easy to use as possible
- Design devices that fit the end user
 - Client – all sizes
 - Therapist – ranging technical skills
- Products that fit the application environment
 - Size
 - Durability
Discussion