P07122 Autonomous Quadcopter Test Plan

Functional Testing – Software

Functional Testing of Software Controller
Synopsis:
Herein are described all of the functional tests for the software components that control the P07122 Autonomous Flight Vehicle, more affectionately called the Quadcopter. Tests and their expected results are outlined for the Rabbit Core Microcontroller RCM4000 program, known as “FlyingRabbit,” and tests for the Java interfacing program, from here on to be called “FlightRabbit.” Completion of each proves the cooperative functionality of the system and demonstrates core higher level capabilities that will be necessary for later flight.
Contents:

2Test #1: FlyingRabbit Command Test

2Test Procedure

3Expected Results

4Test #2: Engine Startup Test

4Test Procedure

4Expected Results

5Test #3: Manual Flight Test

5Test Procedure

5Expected Results

6Test #4: Flight Plan Test

6Test Procedure

7Expected Results

8Test #5: Autonomous Flight Test

8Test Procedure

8Expected Results

9Test #6: Flight Logs Test

9Test Procedure

9Expected Results

Test #1: FlyingRabbit Command Test

Objective:
Test each command sequence between the FlyingRabbit and FlightRabbit. FlightRabbit initiates all command sequences, so use of the Test Interface within FlightRabbit both follows normal operating procedures and allows simple and fast results for individual commands.
Test Procedure
Begin the command test by opening FlightRabbit. If FlightRabbit is not properly installed on your machine, refer to the FlightRabbit User Manual for installation instructions.

[image: image1]
Command Test: Steps 1-5
Repeat these steps for each of the commands. Keep in mind that there are multiple-step processes, so sometimes the desired effect can only be reached by following the sequence outlined in the Communications Protocol. Close the Test Commands frame by clicking either “Close” or the ‘X’ in the window frame.
Expected Results

[image: image2.emf]Command Response

0x00

0x10 - Parameters in response

match parameters in command.

0x01 0x11

0x02

0x12 - Parameters in response

match parameters in command.

0x04 none

0x05

0x13 - Parameters in response

match parameters in command.

0x0D - 0 0x1D - 16 lines, 10 bytes of data

0x0D - 1 0x1D - 16 lines, 10 bytes of data

0x0D - 2 0x1D - 16 lines, 10 bytes of data

0x0D - 3 0x1D - 8 lines, 5 bytes of data

0x0D - 4 0x1D - 16 lines, 10 bytes of data

0x0E

0x1E - Gets 16 bytes of data

from the flight log. Also reports

number of bytes in log (long

integer).

0x0F 0x1F - 0 or 1

Expected Results from Command Test

Check that each response matches the corresponding command shown in this table.
 Test #2: Engine Startup Test
Objective:
Before Manual Flight mode or Autonomous Flight mode, the servos output to the individual engine throttles needs to be adjusted. Test the Engine Startup state by affecting each servo individually with the USB Game Pad Controller.
Test Procedure
Begin the engine startup test by opening FlightRabbit. If FlightRabbit is not properly installed on your machine, refer to the FlightRabbit User Manual for installation instructions.

[image: image3]Engine Startup Test: Affect Servos Individually
Expected Results
When an individual servo is selected, only that servo’s output should be affected by the left analog stick. R1 should lock the output value of the servo. This means that when the left analog stick is let go of after pressing R1, the output value should stay where it was when the left analog stick was released.
Test #3: Manual Flight Test
Objective:
Manual Flight can be achieved without creating or downloading a flight plan. Test the output from FlightRabbit by entering Manual Flight mode and inputting flight goals through the USB Game Pad Controller.
Test Procedure
Begin the manual flight test by opening FlightRabbit. If FlightRabbit is not properly installed on your machine, refer to the FlightRabbit User Manual for installation instructions.

[image: image4]

 SHAPE * MERGEFORMAT Engine Startup Test: Affect Servos Individually
Expected Results
Operations are seen through output in “Runtime Logs” panel. FlyingRabbit responds to commands by affecting servos in accordance to the control program. If the FlyingRabbit is not actually flying, the control program tries to adjust servo outputs, but will quickly max out every servo.
Test #4: Flight Plan Test

Objective:
In the Preflight State, Flight Plans can be created, saved, and reloaded. Test each of these use cases.
Test Procedure
Begin the flight plan test by opening FlightRabbit. If FlightRabbit is not properly installed on your machine, refer to the FlightRabbit User Manual for installation instructions.

[image: image5]
Flight Plan Test: New/Save/Open
Expected Results
At Step 7, the file created should have the following format:

[image: image6]
Flight Plan File Format (*.flp)
Saved files can be accessed by navigating to the “C:\\<installation path>\FlightPlans\” folder. Beyond file input and output format, the results of creating, modifying, and saving Flight Plans should be exactly that – file creation, modification, and saving.
Test #5: Autonomous Flight Test

Objective:
A flight log is downloaded to FlyingRabbit. After Engine Startup sequence, test that FlyingRabbit attempts to achieve goals of the flight plan.
Test Procedure

[image: image7] Autonomous Flight Test: Flight Plan Loaded
Expected Results
FlightRabbit requests four pieces of information while FlyingRabbit is in autonomous flight mode. First, it requests the Starting Point for the current leg of the flight plan. Secondly it requests the current GPS Coordinate reading. Third, it requests the Ending Point for the current leg of the flight plan. And finally it requests the FlyingRabbit’s goal throttle, pitch, roll, and yaw (compass reading). These outputs should be seen in the “Runtime Logs” panel and should also reflect the current leg of the flight. If the Quadcopter is not currently in flight, the throttle will increment to maximum in attempts to reach the goal altitude.

Test #6: Flight Logs Test

Objective:
Flight Logs are created for every time FlightRabbit is run. Logs are divided into two sections; the “Runtime Logs” that are seen in the Runtime Logs panel throughout Flight and the actual “Flight Records” which are saved during flight time within FlyingRabbit. Test the download and view of the Flight Records as well as the view of the Runtime Logs.
Test Procedure
Run the full procedure for either an Autonomous Flight test or a Manual Flight test, then proceed to step one.

[image: image8]
Flight Logs Test: Viewing Logs

Expected Results
Past and present Flight Records and Runtime Logs should be visible through the Flight Logs view. Download of a Flight Record should occur in 16 byte chunks, and stop at the end of file without processing garbage. Flight Logs are saved by time/date stamps that correspond to the beginning of the flight. Flight Records are saved as “*.flr” files. Runtime Logs are saved as “*.rtl” files. Both can be accessed directly by navigating to the “C:\\<installation path>\Logs\” folder.
…

<number (latitude [x10000])>

<number (longitude [x10000])>

<number (altitude [in cm])>

<0, 1, or 2 – where 0 is “do nothing,” 1 is “land,” and 2 is “something else.”>

…

From the Startup screen, double-click on the selection marked, “Start FlightRabbit.”

A username prompt will appear. Enter, “guest” in the text field and press “OK.”

Proceed if “Initialization… ok” appears within 10 seconds in the text area marked “Runtime Logs.” Otherwise, use the output to debug initialization errors.

From the menu bar, select “Edit>>Flight Plan…” or press the “Edit Flight Plan…” button in the navigation bar.

A GPS Flight Plan Form will appear in a pop-up window. Fill the latitude and longitude text fields with 4 decimal point accuracy (there is no error checking, so type at least a single digit followed by “.” and four more digits). Enter altitude in centimeters (no decimal). The “What to do…” field may be left empty. Click “Add...”

The GPS Coordinate will be saved into the Flight Log and displayed in the Coordinate List. Repeat Step 5 until satisfied. A maximum of 16 GPS Coordinates can be added.

Click “Save” and choose a filename and directory for the file. The GPS Flight Plan Form will close.

Open “My Computer” on the desktop. Navigate to the directory with the saved file and check that it exists and contains data.

In FlightRabbit, navigate to GPS Flight Plan Form (see step 4).

Select “New…” and verify that the previous Flight Plan coordinates are cleared from the Coordinate List.

Add one or more coordinates and click “Save.”

Choose a different filename than before and save the new Flight Plan.

Again open the Flight Plan editor and click “Open.”

Open the first flight plan file and verify its contents.

From the Startup screen, double-click on the selection marked, “Start FlightRabbit.”

A username prompt will appear. Enter, “guest” in the text field and press “OK.”

Proceed if “Initialization… ok” appears within 10 seconds in the text area marked “Runtime Logs.” Otherwise, use the output to debug initialization errors.

From the menu bar, select “File>>Test Commands…”

A Command Form will appear and replace the GPS Pane. Select a command from the list and click “send.” Arbitrary input that matches the usage specification is used. The sent command will appear in the “Runtime Logs” followed by the response from the FlyingRabbit.

From the Startup screen, double-click on the selection marked, “Start FlightRabbit.”

A username prompt will appear. Enter, “guest” in the text field and press “OK.”

Proceed if “Initialization… ok” appears within 10 seconds in the text area marked “Runtime Logs.” Otherwise, use the output to debug initialization errors.

From the navigation bar, click “Manual Flight Mode” from the list.

Click “NEXT>>.” A new panel will appear with four servo/rotation readings.

Press Button 1 for Servo 1, Button 2 for Servo 2, etc.

When a single servo is selected, the left analog stick controls the servo output. When the desired rotation reading is reached, press R1 to lock the servo. Other individual servo settings can be adjusted by selecting them then using the analog stick.

Continue from the end of Engine Startup Test (Step 7).

Click “NEXT>>.”

A warning prompt will appear. When there are no buttons being affected on the USB Game Pad Controller, click “OK.”

FlyingRabbit is now in Manual Flight mode. The left analog stick controls Throttle (y-axis) and Yaw (x-axis). The right analog stick controls Pitch (inverted, y-axis [i.e. pressing “up” pushes into nose dive]) and Roll (x-axis). Throttle can be locked similarly as in Engine Startup mode by pressing R1.

Load one of the Flight Plans created in Flight Plan Test.

Select “Autonomous Flight Mode” and click “NEXT>>”

A warning prompt will appear. Review the Flight Log then click “OK.”

The Engine Startup panel will appear. Click “NEXT>>” then “OK.”

FlyingRabbit is now in Autonomous Flight Mode. Periodic flight data will be requested and received by FlightRabbit and displayed in the “Runtime Logs” panel.

Continue from either an Autonomous Flight or Manual Flight test.

Click “View Flight Logs…”

A warning prompt will appear. Review and click “OK.”

Flight Logs panel will replace current view.

After the most current Flight Record has been downloaded from the FlyingRabbit, the current Runtime and Flight logs can be seen in the Flight Logs panel. Older logs can be opened and viewed by clicking, “Open…,” or selecting “File>>Open Flight Logs…” from the file menu.

9 of 9

_1240927569.xls
Sheet1

		Command		Response

		0x00		0x10 - Parameters in response match parameters in command.

		0x01		0x11

		0x02		0x12 - Parameters in response match parameters in command.

		0x04		none

		0x05		0x13 - Parameters in response match parameters in command.

		0x0D - 0		0x1D - 16 lines, 10 bytes of data

		0x0D - 1		0x1D - 16 lines, 10 bytes of data

		0x0D - 2		0x1D - 16 lines, 10 bytes of data

		0x0D - 3		0x1D - 8 lines, 5 bytes of data

		0x0D - 4		0x1D - 16 lines, 10 bytes of data

		0x0E		0x1E - Gets 16 bytes of data from the flight log. Also reports number of bytes in log (long integer).

		0x0F		0x1F - 0 or 1

