P07204: RP10 Robotic Drive Platform
/public/

P07204 Project Readiness Package

Table of Contents

Administrative Information

Project Name
RP 10 Drive Platform
Project Number
P07204
Project Family
P07200 Modular Robotic Vehicle Platform
Track
Vehicle Systems Technology
Start Term
2006-2
End Term
2006-3
Faculty Guide
Dr. Wayne Walter (ME)
Faculty Consultant
Prof. George Slack (EE)
Graduate Teaching Assistant : Jeff Webb (ME)
Primary Customer
Dr. Hensel (ME Dept. Head)
Secondary Customers
Dr. Crassidis (ME), Dr. Hu (CE), Dr. Yang (CE), Dr. Sahin (EE), and Dr. Walter (ME)
Customer contact information
Dr. Edward Hensel, PE
Professor and Head
echeme@rit.edu

Mission Statement

To develop a drive platform for the robotic vehicular platform incorporating modular motors from P07201. The analysis, design, manufacturing, fabrication, test and evaluation will be completely documented to a level of detail that a subsequent team can build upon the work with no more than one week of background research. The robotic vehicular platform family must be within a budget of $15,000.

Project Overview

This student team will develop two modular, fully functional robotic platforms capable of carrying a payload anywhere in the robotics lab, room #9-2230 in Building #09 on the RIT campus. The drive platforms should utilize the RP10 Motor Module, the scalable open architecture motor controllers and the DAQ systems where appropriate. One drive platform (Device RP10A) shall be three wheeled, with at least one RP10 motor module, and a payload capacity of at least 2.5kg. The second drive platform (Device RP10B) shall have at least four wheels, with at least two RP10 motor modules, and a payload capacity of 10kg. By the conclusion of Senior Design II, the team must demonstrate the following:

Test 1: This test will be conducted in the Robotics Lab - room 09-2230.

  1. Remote Control Operation (Tethered or Wireless) of Device RP10A, (carrying a 2.5 kg payload) from the doorway entrance to the lab from the main hallway, through the desks to the front of the room by the instructors work station.
  2. At the instructors work station, at least one motor module will detached from Device RP10A and will be attached as a functional motor module to Device RP10B (This task will be accomplished by a team member in 120 seconds or less).
  3. Device RP10B shall be operated under remote control (Tethered or Wireless) from the front work station to the doorway entrance to the lab from the main hallway.

Test 2: This test will be conducted on a 10' x 10' tiled open floor (e.g. the floor in 09-2230).

  1. The team will be given five x and y coordinates (in inches) by an instructor.
  2. The values must be inputed into a program already written for device RP10A. After it is received by device RP10A, all connections must be severed. This step must be completed in 120 seconds or less.
  3. Device RP10A must autonomously navigate to each coordinate, in order, stopping for 10 seconds at each.

The team must provide complete documentation of the analysis, design, manufacturing, fabrication, test, assembly, operation and evaluation of this subsystem to a level of detail that a subsequent team can build upon their work with no more than one week of background research.

Staffing Requirements

Staffing
Team Member Discipline Role / Skills email address
Wayne Walter ME Faculty Guide, Will work closely with the team on an on-going basis to facilitate success. wwweme@rit.edu
George Slack EE Faculty Consultant, Will provide EE discipline technical support on an intermittant basis. gbseee@rit.edu
Jeff Webb ME Teaching Assistant jbw3914@rit.edu
Kate Nordland ME P07898 software contact ken9444@rit.edu
Brandon Howell EE Power Electronics Engineer Bmh9641@rit.edu
Daniel Wong EE Communications Engineer Daw8121@rit.edu
Brad Whitlock EE Chief Electrical Engineer Bdw1960@rit.edu
Chris Chavoutie EE Systems Integration Coordinator Crc4761@rit.edu
Joe Krisher ME Mechanical Systems Engineer Jjk7687@rit.edu
Geoff Heitzenrater ME Chief Mechanical Engineer gsh4150@rit.edu
Anastasia Lorenz ME Additional Mechanical Support Aml8774@rit.edu
Nathan Boyer ME Project Management ndb9535@rit.edu

Project Manager - Responsible for guiding his or her team members to achieve the goals set forth in the mission statement above; the Project Manager will need to delegate work effectively, and will also have a key role in design approval by being able to evaluate the input from all of his or her teammates, and help the team make critical decisions. This position is responsible for managing finances, setting up meetings, ordering materials, and editing the final report presented at the end of each Senior Design section. This student will also give mechanical support where needed.

Chief Engineer - Responsible for overall technical design. Should be proficient in Pro-Engineer or Solid Works. Maintains the 3-D modeling of the design.

Mechanical Systems Engineer - The Mechanical Systems Engineer should have a strong background in mechanical engineering design, and should be able to collaborate well and interact with students from other fields, specifically electrical engineering teammates. Also, will be responsible for failure analysis. It is recommended that this student be proficient in ANSYS and MatLab.

Additional Mechanical Support - This mechanical engineering student will provide solid modeling support to the chief engineer. Responsible for making sure solid models not related to interfacing with outside design projects are completed accurately and on time.

Power Electronics Engineer - This student is responsible for all electrical design decisions and designs that are associated with powering the motor modules and all parts of the robotic platform.

Communications Engineer - This student is responsible for all design decisions and designs that are associated with the communication between the PC104 central controller, motor controllers, and sensors within the platform, as well as the communication with an outside PC.

Software Engineer - This student is responsible for creating and implamenting the platform motion algorithms, as well as any necessary coding. This will include the coordination of all inputs and outputs.

Systems Integration Coordinator - This student is responsible for checking design decisions against the future plan of the Robotics Platform Track as a whole. They need to ensure that their team project is going in the right direction in terms of scalability, modularity, and feasibility. They will work to make the gap between mechanical and electrical design seamless, and ensure that there is no confusion or conflict with the mechanical and electrical design of the system.

Continuation, Platform, or Building Block Project Information

The mission of the Vehicle Systems Technology Track of projects is to develop a land-based, scalable, modular open architecture, open source, full instrumented robotic/remote controlled vehicular platform for use in a variety of education, research & development, and outreach applications within and beyond the RIT KGCOE. The collection of projects should use an engineering design process to develop modules and subsystems that can be integrated by subsequent senior design teams. This project, P07200, serves as the foundation or starting point for a series of senior design projects.

The mission of each student team contributing to this track is to develop or enhance a particular subsystem for a robotic vehicular platform, and provide complete documentation of the analysis, design, manufacturing, fabrication, test, and evaluation of each subsystem to a level of detail that a subsequent team can build upon their work with no more than one week of background research.

This roadmap will be initiated during the Fall Quarter, 2006-1, with three closely related projects. Additionally, these three projects have significant overlap with projects from the Aerospace Systems and Technology Track (P07100), and the Systems and Controls Track (P07300).

This is a project within the Vehicle Systems Technology Track, to develop a Modular, Scalable, Open Architecure Robotic Vehicle Platform. A critical element of the track is to develop a platform to mount the associated motor modules, motor controller, and data aquisition system on, as well as the payload determined by the end user.

This is a project within the Vehicle Systems Technology Track, to develop a Modular, Scalable, Open Architecure Robotic Vehicle Platform. A critical element of the track is to develop an infra-structure to support the dnyamometry needs of the vehicles under development. In addition, this project should provide the foundation for the dynamometry needs of the ME department at RIT, and in particular the automotive option of the ME program.

A number of other projects are intimately related to this project, as summarized in the list below.

Related Project Title Start Term End Term
P07200 Vehicle Systems Technology Track 2006-1 On-going
P07201 Motor Module - Robotic Platform 10 kg (RP10) 2006-1 2006-3
P07202 Motor Module - Robotic Platform 100 kg (RP100) 2006-1 2006-2
P07203 Dynamometry 2006-1 2006-2
P07204 RP10 Drive Platform 2006-2 2006-3
P07205 RP100 Drive Platform 2006-2 2006-3
P07301 Systems and Controls: Sensors 2006-1 TBD
P07302 Systems and Controls: Actuators 2006-1 TBD
P07303 Systems and Controls: Wireless Communications 2006-1 TBD

Principle Sponsor or Sponsoring Organization

Support for this project is generously provided by the Gleason Foundation.

Support for this project is generously provided by the Gleason Foundation.

This project is supported by a gift from the Gleason Foundation to the mechanical engineering department at RIT.

Detailed Project Description

Overview of related Projects as of Beginning of Winter Quarter

Customer Needs

First Sponsor Interview
Interviewers: K. Nordland
Faculty Guide: Dr. Walters
Teaching Assistant: J. Webb
Date 16 September 2006, Room 2230

Kate: Thanks for meeting with me. As I indicated in my email, I'm preparing the Project Readiness Package for the 100 Kg drive platform senior design group to kick off in winter. Since you're very involved in the current robotic vehicular platform projects, I have several questions for you. To start with, can you tell me about the Robotic Vehicular Platform family of projects?

Jeff: Currently there are 5 senior design projects under this family, the 10 kg motor module, the 100 kg motor module, the dyno, the daq and the motor controller.

Kate: I was aware of the two motor module projects, but I didn't know about the other three. What are those project numbers?

Dr. Walter: P07203 is the Dynomometer, P07301 is the Data Aquisition, and P07302 is the motor controller, which may also serve as the steering controller.

Kate: I understand you've taken on more students than was originally estimated. How has that impacted the scope of the motor module projects?

Jeff: The 10 kg motor module group is expanding into steering control. The 100 kg motor module group is expanding into the sensors on the motor. The plan is that both of these will be able to swap for implementation on the other project. So the steering design that the 10 kg team design should be able to be implemented on the 100kg motor module and vice versa.

Kate: So how do the other groups come into this project?

Jeff: The dyno will be run by the daq to test the motor modules that are run by the motor controller. The dyno should be able to characterize motors, motor transmissions, motor modules as well as a chassis. It should be finished before the FIRST competition at the Field House over spring break.

Kate: I understand that there is a baseline robot that is being built. Can you tell me about those kits what's being done with them?

Jeff: There is an IFI kit that was ordered and built as a baseline for the 100kg motor module. It's going to be tested on an existing dyno to develop a full characterization. That's the D level grade for the 100 kg motor module team. The rest of the project is to scale it to size and improve on the baseline model.

Kate: So when the motor team is done, what will they be delivering to the drive platform team?

Jeff: The package will include the wheel, yoke, motor and transmission.

Kate: What do you see as the scope of the drive platform project team?

Dr. Walter: The platform will need to include a mounting for the microcontroller, the battery, the modular motors, the payload, steering connections, possibly brake connections. It should be scalable, using only OTS components. The project also needs to be completely documented.

Kate: The projects that will be using this robotic platform, do you see them simply using it as a mobile platform, or will they be gathering information from the drive system of the robot?

Dr. Walter: There's a possibilty of both scenarios. There needs to be the ability connect to the robot controller and get information back from the robot. The connections should be easily accessible and simple to connect.
Jeff: You might want to have an industrial engineer on the project to design a clear, easy to use interface to the robot controller.

Kate: Good idea. The motor mounts are to be modular. What's meant by that?

Jeff: The drive platform should have 6 locations available that can be used for placing motors. Any module that isn't being driven will have an idler module in it's place. The motors should be able to be plugged into the motor controller quickly and the platform should function.

Kate: I've read the term "drive by wire". Does that mean tethered?

Dr. Walter: No, drive by wire means that the motor module will include the motor, the transmission and a motor controller. The vehicle controller will use a wire to send the power and instructions to the module. Each wheel will be independent. No axels, or other transmission of power.

Kate:Since there's so many teams working on this project, that seems like a potential trouble spot. How are the current teams dealing with this?

Jeff: They have an executive board that meets to discuss where each of the projects stands. All the of the groups meet on Fridays for updates. The executive board which is the team leader from each group will make the interface decisions for the overlap between groups.

Kate:So the way I see it, the real challenge of this project won't simply be building the platform, but in dealing with the team communications and compatibility, as well as providing the complete top level documentation.

Jeff: Yeah. That's definitely been one of the biggest hurdles so far.

Kate: Would it be possible for me to start sitting in on the executive board meetings? They seem like a great venue to get information on what will be provided to the drive platform team.

Jeff: Sure. They meet on Fridays in the Xerox Auditorium. There's also going to be the DRP that would be a good way to get information on the family projects.

Kate: Great. You have really helped clear up a lot of questions that I had about the project. I'm sure I'll run into more questions as the development of the PRP progresses. In the mean time, I'll plan on attending the Friday meetings for the projects and if I have any other questions, I will get back in touch with you. Thank you so much for your time.

Dr. Walter: See you Friday.
First Customer Interview
Interviewers: K. Nordland, N. Boyer
Customer: Dr. Hensel
Date 29 September 2006, Room 3119

This interview took place throughout a regular meeting regarding Project Readiness Package development. Many customer needs were identified, although it did not fit the flow of a typical interview. During the meeting the following needs were identified.

The mounting design for the 10kg platform and the 100kg platform should be compatible. The design should be done fully in SI units. A T-slot mounting platform, similar to a mill bed, would be an acceptable mounting platform if done to current standards. A fixture plate could be made to interact with the T-slot mounting style but includes dowel pin holes for more accurate alignment. Preferably the fixture plate would be part of the tare weight, meaning the payload would be an addition 100 kg, but that's not critical. The required task to complete at the end of Senior Design 2 would be to have 1 motor module transported between the two configuations. Utilizing more motor modules between the configuations, or also swapping the payload between them would be a higher level of performance. Ideally the motor modules should be easily interchangable to change all modules from one platform configuration to the other within the given time constraint. Another desirable would be to have the motor controller portable between configurations OR between sizes. The payload is simply above the drive level. No side or bottom mount areas are necessary. An estimated platform cost would be approximately $20; this is assuming that interchangablity of the motor modules and microcontolers allows for a simple switch of platform framework.

Suggestions given by Dr. Hensel:

Interpretation of Raw Data in Terms of Customer Needs

Voice of the Customer, Project Objective Tree

This objective tree was created using test code from P07898 and pertains solely to P07204
  1. Constraint
    • Safe
  2. Resources
    • Design completed by March 2007
    • Build completed by May 26 2007
  3. Economic
    • Affordable
      • Fits within given budget of $15,000 for family
  4. Scope
    • Of the Shelf components
    • scalable
    • Interchangable modules
    • Better than the baseline kit
    • Useable within the KGCOE
    • "Cool"
      • Impressive looking
      • Exciting technology for "wooing" prospective students
    • Documentation
      • Open source documentation
      • Clearly well documented
      • Should be able to be caught up on in 1 week
  5. Technical
    • Mounts
      • microcontroller mount
      • battery mount
      • modular motor mounts
      • up to 6 motor "slots"
      • payload mount
      • sensor mounts
      • Mount location for antenna
    • Design Constraints
      • Supports required payload
      • Size constraint
        • Can fit through doorways
      • Tare weight constraint
      • Turning radius constraint
      • Remote distance constraint
    • Project compatibility
      • Uses motors developed by 7201
      • Can be mounted on Dyno (P07203) for testing
      • Uses motor control developed by P07302
      • Provides connections for data aquisition by P07301
      • Adabtable for other SD projects needing a robotic platform

The link below is the Needs Assesment developed by the P07204 team members during the begining of SD1.

NeedsAssessment

Voice of the Customer, Objective Tree

The primary customer, Dr. Edward Hensel, representing the mechanical engineering department of RIT, has expressed his objectives for the design project. These objectives should be addressed across a series of projects related to this track. Some individual projects within the track may focus on various areas of these objectives, but all student teams are encouraged to keep the "big picture" in mind, so that their individual project contributions can be more readily integrated with the larger system view.

  1. Constraint Objectives
    • Regulatory Constraints
      • C.1 The design shall comply with all applicable federal, state, and local laws and regulations. Measure of Effectiveness: Every team shall identify at least one federal, state, or local law or regulation that may have an impact on the system design. The team shall demonstrate compliance with said regulations. Particular attention shall be paid to OSHA requirements, and safety codes and standards related to rotating equipment.
      • C.2 The design shall comply with all applicable RIT Policies and Procedures. Measure of Effectiveness: The team shall offer their design for review by the RIT Campus Safety office, and shall rigorously follow RIT procedures associated with purchasing and safety.
      • C.3 Wherever practical, the design should follow industry standard codes and standards. Safety codes shall be treated as design requirements. Industry standards should be used wherever practical. Measure of Effectiveness: The team shall identify at least one mechanical and at least one electrical standard complied with during the design process.
    • Academic Constraints
      • C.10 Every SD1 project should result in a technical report, including a set of design drawings and bill of materials supported by engineering analysis. Measure of Effectiveness: 80% of all SD1 evaluation responses by all review panels should be at a score of "acceptable" or higher.
      • C.11 Every SD2 project should result in a physical engineering model, supported by experimental test and evaluation data. Measure of Effectiveness: 80% of all SD2 evaluation responses by all review panels should be at a score of "acceptable" or higher.
  1. Scope Objectives
      • S.1 The robotic platform shall be scalable (1 kg, 10 kg, 100kg, and 1000kg payload variants of the same design).
      • S.2 The robotic platform shall be modular (Modules must be inter-changeable between platforms of same scale)
      • S.3 The robotic platform shall be open architecture (All COTS components must be available from multiple vendors)
      • S.4 The robotic platform shall be open source (All drawings, programs, documentation, data, etc. must be open source published in standard formats)
      • S.5 The robotic platform shall be manufacturable in lots as small as one and as large as 10.
      • S.6 The robotic platform shall NOT be designed assuming that it is targeted for a commercial product.
      • S.7 The robotic platform design shall be available for use and adoption by other commercially oriented SD team.
      • S.7a The range of the 10 Kg robotic platform shall be the floor of a single room in the James E. Gleason Building, RIT Bldg #09.
      • S.8 Technologies, software, modules, algorithms, and other developments should be made available to and accessible by the Underwater vehicle platform team and the airborne vehicle platform teams, and vice-versa.
      • S.9 The results of this platform development roadmap should increase the reputation and visibility of the RIT SD program and our robotics technology "skill level" on a national basis.
      • S.10 The modules of the robotic platform shall be re-configurable into many different configurations. For example, it should be EASY and LOW COST to take expensive drive components for individual wheel drives and assemble them into 3-wheel, 4-wheel, and 6-wheel configurations, with the number of driven wheels ranging from 1 to 6.
  1. Technology Objectives
      • T.1 The 10 Kg and 100 kg robotic platform motor modules shall be designed and built first.
      • T.2 The 1 and 1,000 Kg robotic platform motor modules shall be designed and built second.
      • T.3 The range of the 100 Kg robotic platform shall be the James E. Gleason Building, RIT Bldg #09.
      • T.4 The range of the 10 Kg robotic platform shall be the floor of a single room in the James E. Gleason Building, RIT Bldg #09.
      • T.5 The range of the 1 Kg robotic platform shall be an 8'8 by 8' table top.
      • T.6 The range of the 1,000 Kg robotic platform shall be the RIT Campus.
      • T.7 Technologies, software, modules, algorithms, and other developments should be made available to and accessible by the Underwater vehicle platform team and the airborne vehicle platform teams, and vice-versa.
      • T.8 The results of this platform development roadmap should increase the reputation and visibility of the RIT SD program and our robotics technology "skill level" on a national basis. Measure of Effectiveness: By June 2008, at least five student-authored conference papers shall be submitted for publication at technical conferences (outside of the RIT senior design conference). Measure of Effectiveness: By June 2008, at least one student-authored journal paper shall be submitted for publication.
      • T.9 The modules of the robotic platform shall be re-configurable into many different configurations. For example, it should be EASY and LOW COST to take expensive drive components for individual wheel drives and assemble them into 3-wheel, 4-wheel, and 6-wheel configurations, with the number of driven wheels ranging from 1 to 6.
      • T.10 The preferred motion control technology is drive by wire.
      • T.11 The preferred energy source is rechargeable DC battery.
      • T.12 Technology priorities: (1) Two Wheel drive, skid steer (2) Two wheel drive, turn steer (3) Position and heading data logging (4) Autonomous control by the payload client (5) Passive Suspension (6) DFMA (7) Active suspension
      • T.13 As every technology is introduced that technology must be (1) observable by and (2) controllable by the payload client.
      • T.14 Each variant of the vehicle must be clearly impressive to any student, parent, engineer, mentor, or individual familiar with the FIRST robotics competition.

Voice of the Engineer, Function Tree

Figure 1: Prototype Configuration Requirements

Figure 1: Prototype Configuration Requirements

Table 1: Tradeoff Assessment
Model Size (m) Tare Weight (kg) Payload Capacity (kg) Speed (m/s) Turning Radius (m) Remote Range (m)
R10 0.30 x 0.15 x 0.30 9 10 2.25 0.30 30

Background Information Provided by the Customer

Useful Web Resources

You may find it helpful to review these web resources to get comfortable with the robotic platform.

To be completed

Initial Concepts to Consider

To be completed

Customer Deliverables

Design and build a drive platform incorporating the motor modules, motor controller and battery provided and including a platform top with mounting points for securing a payload. See the "Detailed Course Deliverables" section for more specifics.

Customer and Sponsor Involvement

The team will be expected to carry out the vast majority of their interactions with the Team Guide (Dr. Walter), and the teaching assistant (Jeff Webb). Dr. Hensel (The sponsor and customer) will be available for a series of meetings during the course of the project. Dr. Hensel will meet with a group of teams during the beginning of SD1 to lay out common goals, objectives, and philosophies for the sequence of projects being sponsored by the Gleason Foundation gift to the ME Department. It is anticipated that Dr. Hensel will meet with the team (or multiple related teams) for 2 hour meetings approximately 4 times during senior design 1, and twice during senior design 2. Dr. Hensel will participate with team communications electronically, through the web site as well.

Regulatory Requirements

Project Budget and Special Procurement Processes

There is a pre-defined limit of $600 for this project. The team in must demonstrate that their expenditures are in-line to satisfy both the requirements of the individual project, as well as to set the stage towards completion of the overall objectives of the track.

Each team will be required to keep track of all expenses incurred with their project, and to communicate with members of other teams in the track, to insure that the overall track budget as well as the individual project budgets are being followed.

Purchases for this track will be run through the mechanical engineering procurement system. Dave Hathaway (Operations Manager) for the ME department will be point of contact for most purchases associate with this project and this track. It is recommended that each team appoint one person to act as the purchasing agent for the team, and that all interactions between the team and Dave go through the single purchasing agent. The team is responsible for providing all receipts, copies of invoices, shipping documents, and proper use of tax exempt forms, etc.

Intellectual Property Considerations

All work to be completed by students in this track is expected to be released to the public domain. Students, Faculty, Staff, and other participants in the project will be expected to release rights to their designs, documents, drawings, etc., to the public domain, so that others may freely build upon the results and findings without constraint.

Students, Faculty, and Staff associated with the project are encouraged to publish findings, data, and results openly.

Engineering Specifications

Drive Platform Specifications

Safety Constraints

Detailed Course Deliverables

Note that this level describes an absolute level of expectation for the design itself, and for the hardware. However, the student team must also meet all requirements related to analysis, documentation, presentations, web sites, and posters, etc. that are implicit to all projects.

See Senior Design I Course Deliverables for detail.

The following tasks should be completed by the end of SD1:
The following tasks should be completed by the end of SD2:

Preliminary Work Breakdown

This project will closely follow the three week project workshop schedule presented in SD1. See the Course Calender for Details.

In addition, the following tasks should be completed ASAP:

  1. Go over the information on the edge website, from the Design Project Management Robotics Platform Roadmap, and in the Preliminary Information binder.
  2. Discuss progress made by previous Vehicle Systems Technology Track teams.

The following roles are not necessarily to be followed by the team. It is merely to justify the number of students from each discipline. The student team is expected to develop their own work breakdown structure, consistent with the general work outline presented in the workshop series at the beginning of SD1. However, the customer requests a level of detail NO GREATER than weekly tasks to be completed by each student team member for the benefit of the other team members. The customer DOES NOT request any level of detail finer than one-week intervals, but will assist the team members if they wish to develop a finer level of detail to support their own efforts.

This section has not been updated with the change in personel. It should be modified by the team leader at the beginning of week 1.

EXPECTED DELIVERABLES FROM WORK BREAKDOWN
Student Week 1 Week 2 Week 3
ME 1 - Project Manager

Meet with fall quarter teams project manager to establish a baseline of what's been done. Review customer needs statement from above. Conduct followup to verify the needs analysis. Assign work to team members. Determine meeting times for the remainder of the quarter. Set up the P07205 wiki page and begin populating with team information.

Utilize P07898 software to enter in needs determined. Use group consensus to organize the needs into objective trees or affinity diagrams. Apply a pairwise comparison to establish a ranking of the importance of the needs. Determine the engineering functions necessary to meet the needs of the customer. Organize into a function tree. Add the objective tree, pairwise comparison and function tree to the P07205 page. Prepare for week 3 concept development sessions. Lead team concept development sessions. Use an assortment of brainstorming, brainball, and group drawing. Use the function tree to drive concept development in P07898 software. Use pareto voting to determine the top 4 feasible design options. Assign team members to run with designs. Before break, reconnect for design options review. Determine additional work to be done over break.
ME 2 -
  • Prepare an informal presentation that will allow the rest of the group to gain background knowledge of this project, what must be considered for the dyno while designing our project, and how to get more information if needed in the future.
  • Summarize report on P07204 webpage using wiki format.
  • Sketch or model in Pro/E the concepts generated to share with the rest of the group.
  • Summarize the feasibilities of each concept on P07204 webpage using Wiki format.
ME 3 -
  • 3-D Model to scale of entire robotics lab using Pro/E.
  • Summarize dimensions gathered in a table on P07204 webpage using wiki format
  • Sketch or model in Pro/E the concepts generated to share with the rest of the group
  • Summarize the feasibilities of each concept on P07204 webpage using Wiki format
ME 4 -
  • 3-D Model to scale of entire robotics lab using Pro/E.
  • Summarize dimensions gathered in a table on P07204 webpage using wiki format
  • 3-D Model to scale of P07301 and P07302 projects using Pro/E.
  • Yet to be determined
ME 5 -
  • Prepare an informal presentation that will allow the rest of the group to gain background knowledge of this project, what must be considered mechanically for the motor module while designing our project, and how to get more information if needed in the future.
  • Summarize report on P07204 webpage using Wiki format.
  • Sketch or model in Pro/E the concepts generated to share with the rest of the group.
  • Summarize the feasibilities of each concept on P07204 webpage using Wiki format
EE 1 -
  • Prepare an informal presentation that will allow the rest of the group to gain background knowledge of this project, what must be considered electronically for the motor module while designing our project, and how to get more information if needed in the future.
  • Summarize report on P07204 webpage using Wiki format.
  • Sketch or model in Pro/E the concepts generated to share with the rest of the group.
  • Summarize the feasibilities of each concept on P07204 webpage using Wiki format.
EE 2 - Electrical / Mechanical integration
  • Prepare an informal presentation that will allow the rest of the group to gain background knowledge of this project, what must be considered while designing our project, and how to get more information if needed in the future.
  • Summarize report on P07204 webpage using Wiki format.
  • Present all dimensional data to ME 3 for modeling during week 2.
  • Sketch or model in Pro/E the concepts generated to share with the rest of the group.
  • Summarize the feasibilities of each concept on P07204 webpage using Wiki format

Click on link below to see detailed descriptions of work breakdown structure of each team member.

Detailed Preliminary Work Breakdown

Grading and Assessment Scheme

Grading of students in this project will be fully consistent with grading policies established for the SD1 and SD2 courses. The following level describes an absolute level of expectation for the design itself, and for the hardware. However, the student team must also meet all requirements related to analysis, documentation, presentations, web sites, and posters, etc. that are implicit to all projects.

Level D:
The student team will build a triangular robotic platform that successfully carries a 2.5kg payload from the front to the back of the robotics lab (Room #9-2230). The robotic platform is operated by remote control.
Level C:
The student team will deliver all elements of Level D PLUS: The team builds a second platform in rectangular configuration capable of carrying a 10kg platform from the back of the robotics lab to the front.
Level B:
The student team will deliver all elements of Level D and C PLUS: One motor module will be interchanged from the triangular platform to the rectangular platform within 120 seconds. The overall appearance of the robotic platform is capable of impressing perspective students.
Level A:
The student team will deliver all elements of Level D, C, and B PLUS: All three motor modules from the triangular platform are changed over into the rectangular platform at the front of the robotics lab within 120 seconds.

Three-Week SDI Schedule

This project will closely follow the three week project workshop schedule presented in SD1. See the Course Calender for Details.

In addition, the following tasks should be completed ASAP:

  1. Go over the information on the edge website, from the Design Project Management Robotics Platform Roadmap, and in the Preliminary Information binder.
  2. Build the kit provided by the Teaching Assistant.
  3. Test and fully characterize the equipment in the kit.
  4. Compare the results with the other Vehicle Systems Technology Track teams.

Required Resources

Faculty
Item Source Description Available
Prof. Walter ME Faculty Guide/Coordinator/Mentor Yes
Prof. Hensel ME Customer Yes
Prof. Slack EE Technical Consultant Yes
Environment
Item Source Description Available
Robotics Lab ME 09-2230 Work Space/Storage Yes
Sr Design Lab EE 09-3xxx Work Space Yes
ME Shop ME 09-2360 Parts Fabrication Yes
Equipment
Item Source Description Available
DC Motor Dyno EE Electric Machines Lab Characterization Unknown
Power-supply EE Department Used for Testing Unknown
Desktop PC Throughout Programming Yes

The team members will be expected to procure the materials needed for the project, excluding the following:

Materials
Item Source Description Available
Super Droid Robot ATR Teaching Assistant 10kg payload example Yes
IFI Robotics Kit Teaching Assistant 100kg payload example Yes

Requested Resources

In order to be successful on this project, it would be greatly advantageous to have the following items in place.

A mutual request is made for alpha testing of the P07898 web based interface for clarifying the fuzzy front end of the design process. P07898 is the thesis project for Kate Nordland and is being developed to help multidisciplinary design teams deal with identifying the customer needs, translating the needs into concepts and evaluating their feasibility. In order to evaluate the effectiveness of the software, P07204 and P07205 are being asked to utilize the software and provide feedback. While the hope is that this software will be an asset in the early stages of the design process, it is understood that learning a new software and dealing with possible bugs can be frustrating at times. Kate Nordland will be available on Fridays and upon request through out the quarter to explain how the software works and deal with any issues as they arise.

Students on this team will be asked to periodically provide feedback as to how they felt the software impacted their design process. Their participation in this evaluation is very helpful and greatly appreciated.

Possible Areas of Concern

It is acknowledged that one of the largest areas for concern in this family of projects is the interconnected nature of the teams. There is a large dependancy on other people to pull through for your team to be successful. Prompt responses to questions for information are critical. Decisions with regards to the project interfaces need to be made quickly and not to be waiting for someone else to make the call. Consideration must be made for the P07300 family of projects which are not being made solely for use on this robotic platform. While the requirements for an A on the project have been laid out, there is significant room to go above and beyond this scope. In order for the project to reach the highest level of impressiveness, the team will need the buy-in from all of the team members, as well as team members from additional teams.

Another concern is that the team members for P07201 might not be on campus (on coop) during the winter quarter making communication more difficult. Setting up means of communication and the understanding of the need to get information from these team members at the end of Fall Quarter 2006 will help reduce problems that might occur with this issue.

Also P07201 will not have a completed 10kg motor until Spring 2006 in parallel with the due date of the 10kg robotic platform. It is ESSENTIAL that the two teams work closely together so both projects are successful. A backup would be to find alternative motors incase there is a miscommunication.'''