System Test Plan

P07302

Motor Controller Subsystem

Test Plan
V2.0
Index

2Index

3Introduction

4OS to CPLD

5SPI Transmisstions

6ISA PLD System to CAN Control System

7Robotic Platform Instruction Set Processing

7SET_ACCELERATION 0x32 to motor_1

7RAMP_FWD 0x32 to motor_1

7GET_SPD to motor_1

7KILL to motor_1

8SET_ACCELERATION 0x32 to motor_2

8RAMP_FWD 0x32 to motor_2

8GET_SPD to motor_2

8KILL to motor_2

9SET_ACCELERATION 0x32 to motor_FF

9SET_DECELERATION 0x32 to motor_1

9RAMP_BCK 0x32 to motor_1

9GET_SPD to motor_1

Introduction
The purpose of this document is to define a procedure for testing the motor controller subsystem. The initial testing phase investigates components of the motor controller system for appropriate behavior.
The primary testing phase evaluates the motor controller instruction protocol based on the instructions issued at the inputs.
Nomenclature Used Through this Document:
OS: Operating System

ISA: Industry Standard Architecture -- PC104 Bus

CPLD/PLD: Complex Programmable Logic Device

CAN: Controlled Area Network protocol used to communicate with motor modules

0x​​__: Signifies a hex number (for example: 0x1A)

uP: Microprocessor (AMD x86 on PC104 board)
VHDL: VHSIC Hardware Description Langauge

VHSIC: Very High Speed Integrated Circuit

[image: image1.png]Echier Edton Affchage Insertion Formet Outls Tableau Fenétre

DEdA gRY (2@Y -« @QHOE

44 Nomal + (Lati) Gre ~ TinesHewRoman v 12~

6|7 s o] 1
Frlaveckaises - dffier~ € %) D« Kb+ (3 B E.
“ o @[@ @ Eevorse Alera~ | 7] CiDocuments snd Settingslaetiisfles documents\CoursiRl

& T o

Tapez une question - x

P07302: MOTOR CONTROLLER SUSSYTEM|

Interfaces Schematic

i cs
B From CPLD [aom | CAN CAN
: 70000 { sabus) e SCLE | Controller | BECAN,| Transceiver | CANE] SOLATOR .
< :: B9
- System xcocoss |SDL MCP2515 | 1 ye | MCP2551 CANL -
- 16 bits SDO [TECAN | | —
B SPIBus
- =
B o
||
Dessin~ [y Formes automatiques = . % [] O & 4l ¢ =1 Y

Page 1 Sec i 11 A2zan U1 col34

démarrer

ENRREV BT RFP Anglais (Era DX

Motor Controller general schematic

OS to CPLD transmissions over PC104 ISA
1. Attach Motor Control Board onto PC104 stackable bus

2. Boot PC104, this will initialize ISA bus drivers for Linux and bring user to command menu.

3. Program CPLD with VHDL code
4. Initialize Pins on CPLD by using the following table from the CPLD Reference Manual:
[image: image2.emf]
5. Connect Digital Logic Analyzer to data output pins

6. OS to PC104 ISA data transfer

a. Upon running C program pick instruction option
b. Confirm output on Digital Analyzer with following table
	#
	Instructions
	code

	1
	KILL
	1010 0000

	2
	SET_ACCELERATION
	 1010 0001

	3
	SET_DECELERATION
	 1010 0011

	4
	RAMP_FWD
	 1010 0010

	5
	RAMP_BCK
	 1010 0110

	6
	GET_SPD
	 1010 0111

	7
	SET_DISP_TRIGGER
	 1010 0101

	8
	GET_DISP
	 1010 0100

	9
	CLR_DISP
	1010 1100

	10
	SET_ANGLE
	 1010 1101

	11
	GET_ANGLE
	 1010 1111

	12
	GET_TMP
	 1010 1110

	13
	SET_TMP_TRIGGER
	 1010 1010

	14
	GET_PWR
	 1010 1011

	15
	SET_PWR_TRIGGER
	 1010 1011

	16
	GET_SYS_INFO
	1010 1000

SPI Transmissions
1. Attach Motor Control Board onto PC104 stackable bus

2. Boot PC104, this will initialize ISA bus drivers for Linux and bring user to command menu.

3. Program CPLD with VHDL code

4. Use addition CPLD on development board to store SPI input. Implement a register in this CPLD attached to the Pins given in the table

5. Initialize Pins on CPLD by using the pinout table shown above
6. Connect Digital Logic Analyzer to data output pins on additional CPLD
7. Run the motor instructions and confirm with following table
	#
	Instructions
	code

	1
	KILL
	1010 0000

	2
	SET_ACCELERATION
	 1010 0001

	3
	SET_DECELERATION
	 1010 0011

	4
	RAMP_FWD
	 1010 0010

	5
	RAMP_BCK
	 1010 0110

	6
	GET_SPD
	 1010 0111

	7
	SET_DISP_TRIGGER
	 1010 0101

	8
	GET_DISP
	 1010 0100

	9
	CLR_DISP
	1010 1100

	10
	SET_ANGLE
	 1010 1101

	11
	GET_ANGLE
	 1010 1111

	12
	GET_TMP
	 1010 1110

	13
	SET_TMP_TRIGGER
	 1010 1010

	14
	GET_PWR
	 1010 1011

	15
	SET_PWR_TRIGGER
	 1010 1011

	16
	GET_SYS_INFO
	1010 1000

ISA PLD System to CAN Control System
1. Attach Motor Control Board onto PC104 stackable bus

2. Boot PC104, this will initialize ISA bus drivers for Linux and bring user to command menu.

3. Program CPLD with VHDL code

4. Initialize CAN control system state

5. Set CAN control system to init
6. Start ISA bus read routine
a. Read 16 bits of data from ISA bus, with DEADDEAD bit pattern

b. Store 16 bits of data from the ISA bus to the internal register

c. Start CAN transfer routine

d. Shift 16 bits of data from internal transmit register to CAN control system

7. Check 16 bits of data in CAN control system for DEADDEAD bit pattern

Robotic Platform Instruction Set Processing
The following sequence of instructions will be used to test the Robotic Platforms capability of processing instructions sent to it:
SET_ACCELERATION 0x32 to motor_1

1. The SET_ACCELERATIN instruction is defined as: 00000001|00000001|00110010
2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000001

5. Upon receiving the command the internal acceleration register status for motor_1 is checked to be the value 0x32

RAMP_FWD 0x32 to motor_1

1. The RAMP_FWN instruction is defined as: 00000001|00000010|00110010

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000001

5. Upon receiving the command the internal speed register status for motor_1 is checked to be the value 0x32

6. The motor is checked to see if it is spinning at 50% of its maximum speed.
GET_SPD to motor_1

1. The GET_SPD instruction is defined as: 00000001|00000101
2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000001

5. Upon receiving the command the internal speed register status for motor_1 is checked to be the value 0x32

6. The motor is checked to see if it is spinning at 50% of its maximum speed.

7. The result from this instruction is sent back as: 00000001|00000101|00110010

8. The CAN address is checked to be 0000000000000000, that of the motor controller interface board.
KILL to motor_1

1. The KILL instruction is defined as: 00000001|11111111

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000001

5. Upon receiving the command motor_1 seizes all activity.
6. Upon receiving the command the internal speed register status for motor_1 is checked to be the value 0x00
SET_ACCELERATION 0x32 to motor_2
1. The SET_ACCELERATIN instruction is defined as: 00000010|00000001|00110010

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000010

5. Upon receiving the command the internal acceleration register status for motor_2 is checked to be the value 0x32

RAMP_FWD 0x32 to motor_2
1. The RAMP_FWN instruction is defined as: 00000010|00000010|00110010

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000010

5. Upon receiving the command the internal speed register status for motor_2 is checked to be the value 0x32

6. The motor is checked to see if it is spinning at 50% of its maximum speed.
GET_SPD to motor_2
1. The GET_SPD instruction is defined as: 00000010|00000101

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000010

5. Upon receiving the command the internal speed register status for motor_2 is checked to be the value 0x32

6. The motor is checked to see if it is spinning at 50% of its maximum speed.

7. The result from this instruction is sent back as: 00000010|00000101|00110010

8. The CAN address is checked to be 0000000000000000, that of the motor controller interface board.
KILL to motor_2
1. The KILL instruction is defined as: 00000010|11111111

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000010

5. Upon receiving the command motor_2 seizes all activity.

6. Upon receiving the command the internal speed register status for motor_2 is checked to be the value 0x00

SET_ACCELERATION 0x32 to motor_FF

NOTE: motor_FF does not exist, the purpose of this test to see if the CAN error package is sent back via the CAN control system..
1. The SET_ACCELERATIN instruction is defined as: 11111111|00000001|00110010

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000011111111

5. The CAN error package with the internal data byte invalidated and set to 00000000 is expected.
SET_DECELERATION 0x32 to motor_1

1. The SET_DECELERATIN instruction is defined as: 00000001|00000010|00110010

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000010

5. Upon receiving the command the internal deceleration register status for motor_1 is checked to be the value 0x32

RAMP_BCK 0x32 to motor_1

1. The RAMP_BCK instruction is defined as: 00000001|00000011|00110010

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000001

5. Upon receiving the command the internal speed register status for motor_1 is checked to be the value 0x32

6. The motor is checked to see if it is spinning at 50% of its maximum speed.
GET_SPD to motor_1

1. The GET_SPD instruction is defined as: 00000001|00000101

2. The instruction is sent to the program socket.

3. The OPENCAN routine is used to wrap the above routine in base format.

4. The CAN address is checked to be 0000000000000001

5. Upon receiving the command the internal speed register status for motor_1 is checked to be the value 0x32

6. The motor is checked to see if it is spinning at 50% of its maximum speed.

7. The result from this instruction is sent back as: 00000001|00000101|00110010

8. The CAN address is checked to be 0000000000000000, that of the motor controller interface board.

P07302: Motor Controller Subsystem
Page 9 of 10

