Serial Communication Protocol:

Written by Eric Danielson

Version: 1.0
Purpose:

This document will act as a guide for interfacing the MSP430 + Bluetooth to the Laptop where all results are stored.

Abbreviations:

<STX>
- Hex 0x02
- Start Transfer

<ETX>
- Hex 0x03
- End Transfer

<Checksum> - Hex char
- Discussed later
Serial Port Settings:

96600 Baud

No parity

8 Data Bits

1 Stop Bit

Behavior:

The communication between the device and the laptop is one way, due to the need to push out so many results at once. Having the laptop acknowledge each individual result would not be feasible, given the strain already placed on the MSP430 to push out so many signals. Operation of the device is as follows:

1. The therapist attaches the device to a patient

2. The therapist presses a button/switch on the device

3. The device sends the startup code

4. The device starts transmitting results from the sensors

5. The device will not stop sending results until it is turned off via the switch

6. The laptop will not stop logging data until the serial line has been silent for 30 seconds.
Start Up:
After the device is properly attached to the patient, the physical therapists will hit a button/switch which initiates the transfer of data to the laptop via Bluetooth. The initial startup will first transmit the following message:
<STX>MTS_INIT</ETX>

Upon sending this message, the device may begin to transmit data. The reason this message is sent initially is so that the laptop will know that there is a brand new piece of data to start logging. The laptop will continue to log data until nothing is received for 30 seconds.
Data Payload:

Each sensor’s readings are converted from analog to digital, resulting in a 12-bit signal. To conserve bandwidth/processing power, the most efficient way to send results from the MSP430 would be to place the sensor results one after the other.

12 bit result * 8 sensors = 96 bits/12 bytes worth of data in each transfer
The payload will be encapsulated in standard serial communication transmission characters, as shown below:

<STX><12 bytes of sensor data><Checksum><ETX>

It will be the responsibility of the laptop to take the data payload and break it apart for later use.

Error checking:

The underlying Bluetooth protocol handles all reliability and error concerns. The checksum is added as an additional means of reliability.
Checksum:

The checksum is an 8 bit character which is calculated from the first character after STX until the last character before ETX(the last character before ETX being the actual checksum). The checksum technique used is addition.
Psuedo-code explanation of checksum calculation:

Array str_2_send; //This is every character between STX and ETX
int chksum = 0; //The checksum starts at 0
For (int x = 0; x < str_2_send.length; x++) { //For every byte sent

chksum = chksum + str_2_send[x]; //Add the byte value to cksum’s existing val

chksum = chksum % 256; //Since this is a byte, the max value is 255
}

//You now have your checksum value to include in the serial transmission
