P9204 – 1kg Robotic Platform

System level Design
Engineering Analysis – Concept Selection

• Processor
 – BDmicro ATmega128
 • *unrestrictive IDE*
 • *open source / open architecture*
 – This aspect ruled out the existing Freescale board that the 10kg platform uses
 • *expandable memory*
 – This aspect ruled out the Arduino Nano since it does not support expandable memory for future development
 • existing gcc
 • existing codebase
 • support for RS-232, SPI, I2C
Engineering Analysis – Concept Selection

• Bus
 – I²C
 • Modularity
 • Minimal hardware needed for implementation
 – This aspect ruled out CAM since each device connected to the bus requires a CAM controller
 • Slower than SPI but more modular
 • IC compatibility
 • Only 2 signals to drive many devices
 • Risk! – slowest of available buses
Engineering Analysis – Concept Selection

• Motor
 – Stepper
 • *Extremely precise*
 – The most important point for choosing stepper over DC brushed. Crucially important for accurate dead reckoning
 • Superior torque per Watt
 • Power efficient
 • Risk! - System no longer uses PWM signals. Control logic will be more complex.
Engineering Analysis – Concept Selection

• Modularity
 – H-Bridge on individual Modules
 • Since H-bridges are variable dependant on motor type, these should not be hard-wired to the logic board
 • Reduces size of “box”
 – Single PCB Controller
 • Reduces wiring chaos!
 • Smaller size
 • Risk! – less modular than multiple PCB boards
Engineering Analysis – Concept Selection

• Wireless
 – Crossbow
 • *Existing codebase*
 • *Existing hardware* (from 10kg platform)
 • Long range (30 meters)
 • Low power
 • Small size
Engineering Analysis – Concept Selection

• Battery
 – Type still not finalized since maximum current draw has not been calculated.
 • Ni / Li
 – Lead acid ruled out since it is too large
 • 12 V
 • Custom built battery module from 10kg platform will be re-used and tweaked
Risk Assessment

• Possible Risks
 – Not receiving parts on time (i.e. PCBs, Motors, μC)
 – Motor team unfinished with motor module at time of testing
 – Unable to get all code working properly with hardware

• Possible Solutions
 – Reuse existing PCBs & motors, Order Early
 – Test control software with 1st Gen. RP1
 – Concentrate on software that is most important to motor controller
 – Proof of Concept Works to test Design Concepts Early
System Block Diagram

Processing Subsystem
(Lead: John Corleto, Jason Jack)

- μC
- Serial Comms
- Bus Controller

Motor Module Controller Subsystem
(Lead: Jason Jack, Ryan Schmitt)
(PCB Layout: Jeffery Howe)

- Motor Module
- Motor
- Encoder
- H-Bridge
- Bus Controller
- Motor Control Logic
- Encoder Feedback Logic

Wireless Communication Subsystem
(Lead: Ryan Schmitt)

Power Monitor Subsystem
(Lead: Emily Phillips, Nandini Vemuri)
(PCB Layout: Jeffery Howe)

Power Distribution Subsystem
(Lead: Emily Phillips, Nandini Vemuri)
(PCB Layout: Jeffery Howe)

Graphical User Interface
(Lead: Jason Jack)