Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Organizing/Advisory Committee</td>
<td>xi</td>
</tr>
<tr>
<td>Process Development</td>
<td></td>
</tr>
<tr>
<td>Process Planning for Solid Freeform Fabrication Based on Laser-Additive Multi-axis Deposition</td>
<td>1</td>
</tr>
<tr>
<td>Rajeev Dwivedi, Radovan Kovacevic, Southern Methodist University</td>
<td></td>
</tr>
<tr>
<td>Digital Micromirror Device Based Microstereolithography for Microstructures of Transparent Photopolymer and Nanocomposites</td>
<td>13</td>
</tr>
<tr>
<td>George W. Hadipoespiito, Yong Yang, Hongseok Choi, Guoqing Ning,</td>
<td></td>
</tr>
<tr>
<td>Xiaochun Li, University of Wisconsin-Madison</td>
<td></td>
</tr>
<tr>
<td>Advancements in the SIS Process</td>
<td>25</td>
</tr>
<tr>
<td>Bahram Asibabanpour, Behrokh Khoshnevis, Kurt Palmer, Mehdi Mojdeh,</td>
<td></td>
</tr>
<tr>
<td>"Texas State University-San Marcos, "University of Southern California</td>
<td></td>
</tr>
<tr>
<td>Solid Freeform Fabrication by Electrographic Printing</td>
<td>39</td>
</tr>
<tr>
<td>Ashok V. Kumar, Anirban Dutta, James E. Fay, University of Florida-</td>
<td></td>
</tr>
<tr>
<td>Gainesville</td>
<td></td>
</tr>
<tr>
<td>Microfabrication with Femtosecond Laser Processing</td>
<td>50</td>
</tr>
<tr>
<td>Michelle Griffith, Pin Yang, George Burns, Marc Harris, Sandia National Labs-NM</td>
<td></td>
</tr>
<tr>
<td>Alginate-Based Rapid Prototyping System</td>
<td>60</td>
</tr>
<tr>
<td>Paulo Bártolo, Ricardo Lagoa, Ausenda Mendes, Polytechnic Institute of Leiria</td>
<td></td>
</tr>
<tr>
<td>Experimental Studies in Stereolithography Resolution</td>
<td>70</td>
</tr>
<tr>
<td>Benay Sager, David W. Rosen, Meghan Shilling, Thomas R. Kurfess,</td>
<td></td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Pranav Kumar, Elizabeth Beck, Suman Das, University of Michigan-Ann</td>
<td></td>
</tr>
<tr>
<td>Arbor</td>
<td></td>
</tr>
<tr>
<td>Discrete Multiple Material Selective Laser Sintering (M³SLS): Nozzle Design for Powder Delivery</td>
<td>93</td>
</tr>
<tr>
<td>K. Lappo, K. Wood, D. Bourell, J.J. Beaman, The University of Texas at Austin</td>
<td></td>
</tr>
<tr>
<td>Discrete Multiple Material Selective Laser Sintering (M³SLS): Experimental Study of Part Processing</td>
<td>109</td>
</tr>
<tr>
<td>K. Lappo, B. Jackson, K. Wood, D. Bourell, J.J. Beaman, The University of Texas at Austin</td>
<td></td>
</tr>
<tr>
<td>A Motion Planning Approach for Fabrication of Complex 3-D Shapes in a LENS™ Process</td>
<td>120</td>
</tr>
<tr>
<td>Musa Jouaneh, Brent Stucker, "University of Rhode Island, "Utah State University</td>
<td></td>
</tr>
</tbody>
</table>
Comparisons of Two-Dimensional Melt Direct Sintering with Direct Laser Sintering

A Multi-Material Virtual Prototyping System Based on Part Geometry
S.H. Choi, H.H. Cheung, University of Hong Kong

Implementation of a Functionally Gradient Material Modeling and Design System
Aparajit Pratap, Richard H. Crawford, The University of Texas at Austin

Direct Slicing of STEP Based NURBS Models for Solid Freeform Fabrication
B. Starly, A. Lau, W. Sun, W. Lau, T. Bradbury, A. Youssef, C. Gaylo, Drexel University, Therics, Inc.

Integrated Decision Support System for Selection of RP Processes
M. Mahesh, H.T. Loh, Y.S. Wong, J.Y.H. Fuh, National University of Singapore

Modeling for the Control of the Laser Aided Manufacturing Process (LAMP)
Mallikharjuna R. Boddu, Vishnu P. Thayalan, Robert G. Landers, University of Missouri-Rolla

Melt Pool Size and Stress Control for Laser-Based Deposition Near a Free Edge
Pruk Aggarangsi, Jack L. Beuth, Michelle Griffith, Carnegie Mellon University, Sandia National Labs-NM

Two-Dimensional Modeling of Sintering of a Two-Component Metal Powder Layer on Top of Multiple Sintered Layers with a Moving Gaussian Heat Source
Tiebing Chen, Yuwen Zhang, New Mexico State University

Thermal Process Maps for Controlling Microstructure in Laser-Based Solid Freeform Fabrication
Srikanth Bontha, Nathan W. Klingbeil, Wright State University

Level Set Methods for Modeling Laser Melting of Metals
Haseung Chung, Suman Das, University of Michigan

Comparisons Between Thermal Modeling and Experiments in Laser-Densified Dental Powder Bodies
Kun Dai, Xiaoxuan Li, Leon L. Shaw, University of Connecticut-Storrs

Process Control of Laser Metal Deposition Manufacturing – A Simulation Study
Robert G. Landers, University of Missouri-Rolla

Application of a Diagnostic Tool in Laser Aided Manufacturing Processes
Sashikanth Prakash, Mallikharjuna Rao Boddu, Frank Liou, University of Missouri-Rolla

Design of a Customized Multi-Directional Layered Deposition System Based on Part Geometry
Multi-Direction Layered Deposition – An Overview of Process Planning Methodologies
Prabhjot Singh, Debasish Dutta, University of Michigan-Ann Arbor-------------------------- 279

The Effect of Layer Orientation on the Tensile Properties of Net Shape Parts Fabricated in Stereolithography
Andrew C. Layton, David W. Rosen, Georgia Institute of Technology---------------------- 289

Solid Freeform Fabrication Based on Micro-Plasma Powder Deposition
Huijun Wang, Wenhui Jiang, Michael Valant, Radovan Kovacevic,
Southern Methodist University-- 301

Experimental Study of the Cooling Characteristics of Polymer Filaments in FDM and Impact on the Mesostructures and Properties of Prototypes
Q. Sun, G.M. Rizvi, C.T. Bellohemeur, P. Gu, University of Calgary--------------------- 313

LENS Deposition of Complex Geometries
David D. Gill, Michelle L. Griffith, Daryl E. Reckaway, Clifton F. Briner,
Douglas G. Abrams, Sandia National Labs-NM--- 324

Process Scaling and Transient Melt Pool Size Control in Laser-Based Additive Manufacturing Processes
Andrew Birnbaum, Pruk Aggarangsi, Jack Beuth, Carnegie Mellon
University-- 328

Application of Design of Experiments (DOE) on the Processing of Rapid Prototyped Samples
J. Weinnmann, H. Ip, D. Prigozhin, E. Escobar, M. Mendelson, R. Noorani,
Loyola Marymount University-- 340

Optimization of SLS Process Parameters Using D-Optimality
Amol S. Ghanekara, Richard H. Crawfordb, Douglas Watsonc, “The University of Texas at Austin, bNational Instruments, Inc. ---------------------------------- 348

Applications

Freeform Fabrication of 3D Zinc-Air Batteries and Functional Structural-Electric Assemblies
Evan Malone, Kian Rasa, Daniel Cohen, Todd Isaacson, Hilary Lashley,
Hod Lipson, Cornell University--- 363

Rapid Prototyping for Aerospace Launch Vehicles
K. Siva Prasad, E. Rathakrishnan, Sanjay G. Dhande, IIT-Kanpur--------------------- 375

Functionally Graded Polymer Matrix Nano-Composites by Solid Freeform Fabrication: A Preliminary Report
Richard Chartoff, Brian Mc Morrow, Pierre Lucas, University of Arizona---------- 385

Control of the Cross Section Geometry of Extruded Dental Porcelain Slurries for Rapid Prototyping Applications
Jiwen Wanga, Leon L. Shawa, Harris L. Marcusc, T.B. Cameronb,aUniversity of Connecticut-Storrs, bDentsply Ceramco------------------------------------- 392

Design and Analysis of Orthogonally Compliant Features for DuraForm/SLS Manufactured Plates
Mario Faustinia, Richard Crawfordb, Richard R. Neptunec, William

iii
Reaction Bonded Silicon Carbide: SFF, Process Refinement and Applications
R. Scott Evans, David L. Bourell, Joseph J. Beaman, Matthew I. Campbell,
The University of Texas at Austin--- 414

Rapid Prototyping of 3D Scaffolds for Tissue Engineering Using a Four-Axis Multiple-Dispenser Robotic System
L. Geng, Y.S. Wong, D.W. Hutmacher, W. Feng, H.T. Loh, J.Y.H. Fuh,
National University of Singapore-- 423

Rapid Manufacturing with Electron Beam Melting (EBM) – A Manufacturing Revolution?
Morgan Larssona, Ulf Lindhea, Ola Harryssonb, aArcam AB, bNorth Carolina State University--- 433

Direct Fabrication of Metal Orthopedic Implants Using Electron Beam Melting Technology
Ola L.A. Harrysson, Denis R. Cormier, Denis J. Marcellin-Little, K.R. Jajal, North Carolina State University--- 439

Direct Laser Sintering of Ceramics
F. Klocke, Christoph Ader, Fraunhofer Institute for Production Technology
IPT --- 447

On Ceramic Parts Fabricated Rapid Prototyping Machine Based on Ceramic Laser Fusion
Hwa-Hsing Tanga, H.C. Yena, Wen-Hsiang Lenb, aNational Taipei University of Technology, bInstitute of Manufacturing Technology------------------------ 456

Recycling of RP Models by Solution – Casting Technique
K. Siva Prasad, E. Rathakrishnan, Sanjay G. Dhande, IIT-Kanpur------------------------ 465

A Study on the Manufacturing of Large Size Hollow Shape Parts for Prototype-Car Using Rapid Prototyping Technology and Vacuum Molding
Hwa-Joon Yang, Tae-Sik Jang, Choong-Ryeol Ryu, Il-Yup Lee, Hyundai-Motor Company-- 470

Instrumented Prototypes
M. Shimek, K. Lappo, K. Wood, D. Bourell, R. Crawford, The University of Texas at Austin--- 479

Laser Direct-Write of Nanoporous Optical Coatings: Preliminary Results
R. Ruizpalaciosa, H. Kyogokub, V. Srirama, K.L. Wooda, J.J. Beamana,
aThe University of Texas at Austin,
bKinki University--- 491

Modeling and Characterization of a Novel, Low-Cost, Direct-Write Waveguide
M.A. Mignatti, M.I. Campbell, R. Ruizpalacios, K.L. Wood, J.J. Beaman,
The University of Texas at Austin--- 501

Materials
Silicon Carbide Growth Using Laser Chemical Vapor Deposition
Jian Mi, Josh Gillespie, Ryan W. Johnson, Scott N. Bondi, W. Jack Lackey,
Georgia Institute of Technology---------------------------------- 510

Fabrication of Laser Deposited TiC/Steel Matrix Composite Coatings
Wenhui Jiang, Radovan Kovacevic, Southern Methodist University ------------------- 524

Particle Size Influence Upon Sintered Induced Strains Within 3DP™
Stainless Steel Components
Scott Johnston^ab, Rhonda Anderson^ab, Duane Storti^c, “University of
Washington, ”Concurrent Technologies ------------------------------- 536

Characterization of High Alloy Steel Produced Via Electron Beam
Melting
Denis Cormier, Ola Harrysson, Harvey West, North Carolina State
University --- 548

Mechanics of the Selective Laser Raster-Scanning Surface Interaction
Jorge Ramos^ab, David Bourell^b, “Pontificia Universidada Catolica de Chile,
^bThe University of Texas at Austin---------------------------------- 559

Precision Extruding Deposition and Characterization of Cellular Poly-
[]-Caprolactone Tissue Scaffolds
F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun, S. Gücüeri, A. Lau, Drexel
University --- 573

Selective Laser Sintering of DuraForm™ Polyamide with Small-Scale
Features
Vinay Sriram, Kristin Wood, David Bourell, Joseph J. Beaman, The
University of Texas at Austin---------------------------------- 585

Post-Processing of DuraForm™ Polyamide with Small-Scale Features
Hadi Zarringhalam, Neil Hopkinson, Loughborough University------------------ 596

Effects of Cryogenic Processing on Rapid Prototyping Materials (DSM
Somos-8110 and DuraForm PA)
J. Jackson^c, G. Chapple^c, J. Do^c, X. Zhuang^c, J. Bulman^c, J. Foyos^c, M.
Mendelson^c, R. Noorani^c, B. Fritz^b, “Loyola Marymount University,
^bNorthrop Grumman---------------------------------- 607

Three Dimensional Printing of Tungsten Carbide-Cobalt Using a
Cobalt Oxide Precursor
Brian D. Kernan, Emanuel M. Sachs, Mark A. Oliveria, Michael J. Cima,
Massachusetts Institute of Technology ---------------------------------- 616

A Generic System for Homogenous SLS Steel Materials
Klas Boivie, Woxéncentrum, KTH, The Royal Institute of Technology ------------------ 632

Direct Selective Laser Sintering of Tool Steel Powders to High Density:
Part A – Effects of Laser Beam Width and Scan Strategy
C. Hauser^b, T.H.C. Childs^b, C.M. Taylor^b, M. Badrossamay^b, S. Akhtar^b,
C.S. Wright^c, M. Youssefi^c, J. Kie^c, P. Fox^c, W. O’Neill^c, “University of
Leeds, ”University of Bradford, “University of Liverpool------------------ 644

Direct Selective Laser Sintering of Tool Steel Powders to High Density:
Part B – The Effect on Microstructural Evolution
S. Akhtar^b, C.S. Wright^c, M. Youssefi^c, C. Hauser^b, T.H.C. Childs^b, C.M.
Taylor^b, M. Badrossamay^b, J. Kie^c, P. Fox^c, W. O’Neill^c, “University of
Bradford, ”University of Leeds, “University of Liverpool------------------ 656
Laser Melting of Ti-Ni Shape Memory Alloy

Hideki Kyogokua, Jorge A. Ramosb, David L. Bourellc, aKinki University,
bPontificia Universidad Católica de Chile, cUniversity of Texas at Austin

Author/Attendee List

vi